On Pansiot Words Avoiding 3-Repetitions

نویسندگان

  • Irina A. Gorbunova
  • Arseny M. Shur
چکیده

The recently confirmed Dejean’s conjecture about the threshold between avoidable and unavoidable powers of words gave rise to interesting and challenging problems on the structure and growth of threshold words. Over any finite alphabet with k ≥ 5 letters, Pansiot words avoiding 3-repetitions form a regular language, which is a rather small superset of the set of all threshold words. Using cylindric and 2-dimensional words, we prove that, as k approaches infinity, the growth rates of complexity for these regular languages tend to the growth rate of complexity of some ternary 2-dimensional language. The numerical estimate of this growth rate is ≈1.2421.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Repetition Avoidance in Circular Factors

We consider the following novel variation on a classical avoidance problem from combinatorics on words: instead of avoiding repetitions in all factors of a word, we avoid repetitions in all factors where each individual factor is considered as a “circular word”, i.e., the end of the word wraps around to the beginning. We determine the best possible avoidance exponent for alphabet size 2 and 3, ...

متن کامل

A generator of morphisms for infinite words

We present an algorithm which produces, in some cases, infinite words avoiding both large fractional repetitions and a given set of finite words. We use this method to show that all the ternary patterns whose avoidability index was left open in Cassaigne’s thesis are 2-avoidable. We also prove that there exist exponentially many 7 4 + -free ternary words and 7 5 + -free 4-ary words. Finally we ...

متن کامل

Words avoiding repetitions in arithmetic progressions

Carpi constructed an infinite word over a 4-letter alphabet that avoids squares in all subsequences indexed by arithmetic progressions of odd difference. We show a connection between Carpi’s construction and the paperfolding words. We extend Carpi’s result by constructing uncountably many words that avoid squares in arithmetic progressions of odd difference. We also construct infinite words avo...

متن کامل

Letter frequency in infinite repetition-free words

We estimate the extremal letter frequency in infinite words over a finite alphabet avoiding some repetitions. For ternary square-free words, we improve the bounds of Tarannikov on the minimal letter frequency, and prove that the maximal letter frequency is 255 653 . Kolpakov et al. have studied the function ρ such that ρ(x) is the minimal letter frequency in an infinite binary x-free word. In p...

متن کامل

On primary and secondary repetitions in words

Combinatorial properties of maximal repetitions (runs) in formal words are studied. We classify all maximal repetitions in a word as primary and secondary where the set of all primary repetitions determines all the other repetitons in the word. Essential combinatorial properties of primary repetitions are established.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012